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ABSTRACT

During the 2017 Spring Forecasting Experiment in NOAA’s Hazardous Weather Testbed, 62 meteorologists

completed a survey designed to test their understanding of forecast uncertainty. Survey questions were based

on probabilistic forecast guidance provided by theNSSLExperimentalWarn-on-Forecast System for ensembles

(NEWS-e). A mix of 20 multiple-choice and open-ended questions required participants to explain basic

probability and percentile concepts, extract information using graphical representations of uncertainty, and

determine what type of weather scenario the graphics depicted. Multiple-choice questions were analyzed using

frequency counts, and open-ended questions were analyzed using thematic coding methods. Of the 18 questions

that could be scored, 60%–96% of the participants’ responses aligned with the researchers’ intended response.

Some of themost challenging questions proved to be those requiring qualitative explanations, such as to explain

what the 70th-percentile value of accumulated rainfall represents in an ensemble-based probabilistic forecast.

Additionally, participants providing answers not aligning with the intended response oftentimes appeared to

consider the given information with a deterministic rather than probabilistic mindset. Applications of a de-

terministic mindset resulted in tendencies to focus on the worst-case scenario and to modify understanding of

probabilistic concepts when presented with different variables. The findings from this survey support the need

for improved basic and applied training for the development, interpretation, and use of probabilistic ensemble

forecast guidance. Futurework should collect data for a larger sample size to examine the knowledge gaps across

specific user groups and to guide development of probabilistic forecast training tools.

1. Introduction

Uncertainty is inherent in forecasts of any natural sys-

tem, including the weather. The limited predictability of

the atmosphere and the resulting initial value problem thus

calls for an ensemble of numericalweather predictions that

can provide probabilistic forecast information (Bauer et al.

2015). Advancements in scientific understanding, com-

puting resources, and observations have led to the devel-

opment of operational numerical weather prediction

systems that span the temporal and spatial scales of

seasonal global forecasts to daily regional forecasts.

Improvements in the skill of these forecast systems

have been observed over the past several decades

(Magnusson and Källén 2013). Since the mid-2000s, the

development of convection-allowing models (CAMs)

has provided short-term forecast guidance on the timing,

intensity, location, and coverage of storms (e.g., Done

et al. 2004; Sobash et al. 2011; Sobash and Kain 2017).

An initial evaluation on the use of CAMs during the

NOAA Hazardous Weather Testbed Spring Fore-

casting Experiment (SFE) in 2004 found that this

guidance added value during the production of human

forecasts for severe weather (Kain et al. 2006). The

evaluation of CAMs has since expanded to a larger

number of experimental ensemble systems in subsequentCorresponding author: Katie Wilson, katie.wilson@noaa.gov
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SFEs, motivating the development of the Community

Leveraged Unified Ensemble in 2016 (Clark et al. 2018).

Demonstrations of CAM benefits to the forecast pro-

cess have resulted in several CAM systems becoming

operationalized, namely, the High Resolution Rapid

Refresh (HRRR; Benjamin et al. 2016) and the High

ResolutionEnsembleForecast Systemversion 2 (HREFv2;

Jirak et al. 2018).

A more recent addition to the SFE activities is

the testing and evaluation of the NSSL Experimental

Warn-on-Forecast System for ensembles (NEWS-e). De-

veloped as the prototype CAM ensemble system for the

NOAA Warn-on-Forecast project (Stensrud et al. 2009,

2013), NEWS-e, and other prototype Warn-on-Forecast

systems, provides real-time and short-term probabilistic

forecast guidance for a variety of weather threats within

the watch-to-warning timeframe (0–6 h) over a regional-

scale forecast domain (e.g., Wheatley et al. 2015; Jones

et al. 2016; Skinner et al. 2016; Yussouf et al. 2016; Skinner

et al. 2018). In 2017, SFE participants used NEWS-e fore-

cast guidance to issue two 1-h total severe outlooks (i.e.,

combined threats of severe hail, straight-line winds, and

tornadoes). While this hands-on activity gave participants

exposure to NEWS-e forecast guidance, the researchers did

not expect for the group-driven end products to reveal the

ways each participant understood, extracted, and applied

the probabilistic forecast guidance. Given that CAM

ensemble-based forecast guidance is becomingmore widely

available to forecasters, it is crucial to know what current

knowledge and interpretive skills meteorologists employ

when assessing such uncertainty information.

Research has shown that accurate interpretation of un-

certainty information can be challenging formeteorologists,

which in part stems from difficulties in correctly identifying

and understanding the ways in which probabilities are cal-

culated and the reference class they represent. For example,

probabilistic information can be calculated using ap-

proaches based on frequency, subjectivity, or climatology

(de Elía and Laprise 2005; AMS 2008). Additionally,

probabilities have the potential to represent different

aspects of a weather event, such as the frequency of

occurrence, the areal extent in which it occurs, or its

timing. Numerous studies have shown that incorrect

attribution of uncertainty information to one of these

aspects is a common cause for misinterpretation of

probability of precipitation (PoP) forecasts among the

U.S. public (Murphy and Winkler 1971, 1974;

Gigerenzer et al. 2005; Joslyn et al. 2009) and among

meteorologists (Stewart et al. 2016). Inaccurate in-

terpretations of uncertainty information have the po-

tential to result in inconsistent messaging of risk

information, which in turn can present difficulties for

end users when making sense of forecast products.

Despite the known challenges associated with un-

derstanding uncertainty information, over the past

decade, numerous reports have outlined the potential

benefits of quantifying uncertainty to both forecasters’

and special end users’ (e.g., broadcast meteorologists

and emergency managers) decision-making (e.g., NRC

2006; Joslyn et al. 2007; AMS 2008; Hirschberg et al.

2011; Demuth et al. 2009). Additionally, in a survey

investigating laypeople’s use and understanding of

forecast information, most respondents indicated a

willingness or preference for receiving probabilistic

forecasts (Morss et al. 2008). The movement toward

the greater use and dissemination of uncertainty in-

formation is also supported in the Forecasting a Con-

tinuum of Environmental Threats (FACETs) concept

(e.g., Rothfusz et al. 2014; Karstens et al. 2015; Rothfusz

et al. 2018), where a continuum of probabilistic in-

formation is expected to drive weather-related decisions

and modernize the current NWS watch and warning

system. To achieve the FACETs vision and ensure the

potential utility and benefits of probabilistic guidance is

maximized, assessing forecaster knowledge and training

needs is essential. In surveying NWS forecasters’ under-

standing of uncertainty information, Novak et al. (2008)

identified a need for improved education and training in

this area. To make use of the guidance information within

the forecast process, forecasters expressed a need to not

only learn more about how ensemble prediction systems

are constructed and how the guidance is derived, but to

also have access to basic interpretation and application

training of ensemble output (Novak et al. 2008).

Given this need for improved knowledge of forecasters’

understanding of probabilistic guidance, the study pre-

sented herein was designed to examine the 2017 SFE

participants’ understanding and interpretation of NEWS-e

forecast guidance prior to using it during the hands-on

activity. The survey questions were developed to learn

about participants’ understanding of basic uncertainty

concepts and to assess what mental models partici-

pants used when presented with NEWS-e probabilistic

forecast guidance. To the authors’ knowledge, this

study is the first of its kind to examine meteorologists’

understanding of probability concepts beyond PoP

forecasts. The overall survey approach is described in

section 2, and participants’ responses to each of the

questions are described in section 3. These results help

to highlight the extent to which participants were able

to successfully answer questions focused on various

aspects of uncertainty information, the types of topics

or tasks that were particularly challenging to partici-

pants, and the specific training needs required to en-

able effective assessments of NEWS-e (and other)

probabilistic forecast guidance in the future.

338 WEATHER , CL IMATE , AND SOC IETY VOLUME 11

D
ow

nloaded from
 http://journals.am

etsoc.org/w
cas/article-pdf/11/2/337/4880661/w

cas-d-18-0084_1.pdf by N
O

AA C
entral Library user on 11 August 2020



2. Survey design and analysis

The NEWS-e survey was administered during the 2017

SFE, which is an annual NOAA Hazardous Weather

Testbed experiment that evaluates new concepts and

technologies for improving severe weather prediction (e.g.,

Kain et al. 2003; Clark et al. 2012; Gallo et al. 2017). Over

the course of 5 weeks, 62meteorologists participated in this

survey prior to their initial exposure to NEWS-e. The sur-

vey took approximately 30min to complete. The 62 mete-

orologists varied in terms of their occupation and years of

experience (Fig. 1), with over half of them working in re-

search (61%) and a smaller portion working in operational

meteorology (19%) or working toward a graduate degree/

postdoc (16%). Participants were predominantly male

(84%), and themajority of participants held a postgraduate

degree (85%). Two respondents did not disclose their oc-

cupation, gender, or education.

The survey administered to participants consisted

of a series of multiple-choice and open-ended ques-

tions designed to assess their understanding and in-

terpretation of probabilistic and percentile concepts

as they relate to ensemble-based probabilistic fore-

casts (see appendix). Most importantly, participants

needed to understand how probability of exceedance

(Fig. 2a) and percentile (Fig. 2b) values are derived from

probability and cumulative distribution functions, re-

spectively. Although historically percentile concepts

have not been applied to forecasting in the way proba-

bility concepts have, the increasing availability of en-

semble forecasts supports users’ abilities to incorporate

personal risk tolerance into forecasts and identify

potential worst case scenarios (Novak et al. 2014). The

use of percentiles to assess and communicate weather

risk is thus being explored and tested for a variety of

weather phenomena. The survey questions required par-

ticipants to explain, interpret, and extract information

from visualizations for a range of weather scenarios.

Surveys were completed independently on computers,

and all responses were saved to a database. While com-

pleting the survey, participants were able to seek clarifi-

cation on questions from assisting researchers. Fewer than

10% of participants sought this clarification.

All survey responses were combined for each question

and analyzed. Multiple-choice questions or questions

requiring a simple response (e.g., reporting of a proba-

bility value) were analyzed using a frequency count.

Nine open-ended questions that yielded more elaborate

responses were examined in greater depth. After iden-

tifying recurring themes within the responses, the five

authors met regularly to ensure that they agreed on the

meaning and interpretation of these different themes.

Once consensus was established, two research team

members were assigned to each of these open-ended

questions and coded all of the qualitative responses. The

FIG. 1. Participants’ years of experience in their reported pro-

fessions, including research, forecasting, and student/postdoc.

FIG. 2. Schematic showing (a) the probability of (or percent of

ensemble members) exceeding a threshold value X and (b) the

corresponding percentile at which value X occurs for a Gaussian

distribution.

APRIL 2019 W I L SON ET AL . 339

D
ow

nloaded from
 http://journals.am

etsoc.org/w
cas/article-pdf/11/2/337/4880661/w

cas-d-18-0084_1.pdf by N
O

AA C
entral Library user on 11 August 2020



coding process required the researchers to consider the

meaning of each response and attribute it to the relevant

theme(s) identified previously [see Saldaña (2016) for

further details on qualitative coding]. The pairing of re-

searchers varied formost of the nine questions. To ensure

sufficient consistency between researchers, interrater re-

liability was calculated for each of these coded questions

using Cohen’s kappa. Unlike the more simplistic per-

centage agreement statistic, the Cohen’s kappa takes into

account the possibility of chance agreement between two

coders (Cohen 1960; Fleiss 1981; McHugh 2012). The

kappa statistic ranges from21 to11, with larger positive

values representing greater interrater reliability. Using

the Kappa.test function in R and the thresholds recom-

mended by Landis and Koch (1977), almost perfect in-

terrater agreement was established (i.e., kappa$ 0:8) for

eight of the nine questions, and substantial interrater

agreement (i.e., 0:6# kappa, 0:8) was established for

the remaining question. In the following sections, results

from these coded responses and those from themultiple-

choice questions are shared. Questions are grouped de-

pending on whether they assessed participants’ knowledge

of probability concepts, percentile concepts, or a combi-

nation of probability and percentile concepts, which are

further described in Table 1 and the appendix. The results

are organized and discussed according to these three

groups, and participants’ overall success in answering each

question is summarized in Fig. 3.

3. Results

a. Probability concepts

The survey began with a question that required

participants to extract and make sense of probability

values for accumulated rainfall exceeding 0.01 in.

(Fig. 4). Participants were first asked to describe the type

of weather event that the graphic depicted (Q1). The

researchers’ intended response was that a widespread

area, with some isolated regions, has a greater than 90%

probability of exceeding 0.01 in. of rainfall between 0000

and 0130 UTC. Of the responses, n 5 13 participants

provided most if not all elements of the intended re-

sponse (e.g., ‘‘a relatively large area characterized with a

high probability of precipitation accumulation exceed-

ing 0.01 in. threshold during an hour and a half period’’),

while n5 17 participants provided responses focused on

the definition of the product (e.g., ‘‘probability of mea-

surable precipitation based on how many ensemble

members depict QPF over 0.0100 in a grid point’’). Of the

remaining participants, n 5 13 reported that the graphic

depicted heavy rainfall or severe storms, while n 5 19

either simply described thewidespread nature of the event

or speculated on the storm mode and/or forcing mecha-

nisms responsible for the event. While some of these

answers captured elements of the intended response,

about a third of participants misinterpreted the graphic

and/or question, which was near the maximum percent-

age of misunderstanding demonstrated in any question

(Fig. 3). Notably, the most common error involved an

inference of severity that went beyond the presented

probability information. The design of the graphics

and a deterministic construal error are possible expla-

nations for this inference. The color code used in the

graphic resulted in a widespread shade of red in Fig. 4,

which is often associated with danger (Ash et al. 2014).

Additionally, the apparent oversimplification of proba-

bilistic forecasts resulted in deterministic responses.

While participants may have reduced their cognitive

loads to provide such responses, the given uncertainty

information was not used to inform their understanding

of the event (Savelli and Joslyn 2013).

TABLE 1. Concepts tested in the survey.

Probability concepts Percentile concepts

Combined probability and percentile

concepts

Making sense of and extracting

information from visualizations using

probability values and exceedance

thresholds.

Explaining percentile representations of

accumulated rainfall.

Using percentile representations of

accumulated rainfall to determine the

probability of exceeding a given value

of rainfall.

Relating probability values to ensemble

members.

Comparing percentile and PoP

representations of accumulated rainfall.

Combining probability and percentile

representations of accumulated rainfall

and 2–5-km UH to decipher whether the

graphic depicts a high-/low-probability

event with high/low consequence.

Understanding why probability values

decline in swaths of accumulated

rainfall and UH.

Using percentile representations of

accumulated rainfall to extract the least,

greatest, and range of expected rainfall

amounts.
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Using this same graphic, participants were then asked

to identify the maximum amount of rainfall possible

within boxes A and B (Q2 and Q3). The intended re-

sponse was that the maximum could not be determined

from the given information, but that the graphic shows a

90% probability at A (Q2) and a 10%–20% probability at

B (Q3) of exceeding 0.01 in. of rainfall. In both questions,

participants’ correct responsesmost frequently stated they

could not determine the maximum value (n 5 43 in Q2

and n 5 39 in Q3) and/or there was some chance of re-

ceiving greater than 0.01 in. of rainfall (n 5 32 in Q2 and

n 5 26 in Q3). Some participants gave both of these re-

sponses (e.g., ‘‘this information isn’t sufficient to convey a

maximum amount of precipitation, only the likelihood

that any measurable precipitation will fall’’), while others

elaborated further by indicating the high/low likelihood

of receiving greater than 0.01 in. of rainfall (n5 12 in Q2

and n 5 19 in Q3). Additionally, in Q3, a subset of

participants (n 5 10) reported the relative likelihood of

exceeding the same amount of rainfall at location B

compared to location A (i.e., B , A with strong/mod-

erate confidence or B 5 A with lower probability).

A subset of participants in Q2 and Q3 either did not

grasp that a definitive answer could not be provided using

the information presented in Fig. 4, or were influenced

by perceived demand characteristics (e.g., Orne 1962)

and inferred that an answer must exist given the ques-

tion was asked. These participants instead reported a

specific maximum value of accumulated rainfall ranging

between 0.01 and 5 in. Examples of responses include

‘‘with such little information I would assume around

an inch of rain for box A,’’ and ‘‘around one quarter

inch, assuming the CAMs are correct with placement

of convection.’’ The most popular values given were

0.01 and 1 in. Participants giving the former value did

not demonstrate an understanding of the exceedance

threshold, while participants giving the latter may have

misinterpreted the color bar and assumed the colors

represented accumulated rainfall amounts rather than

probabilities. There is little explanation for why the

other values were given (e.g., 0.03, 0.25, and 5 in.). De-

spite the similarity in question style and use of the same

FIG. 3. The percent of participants providing correct responses for Q1–Q18.

FIG. 4. Probability of accumulated rainfall exceeding 0.01 in.

(referred to in Q1–Q3).
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graphic in Q2 and Q3, more than twice as many par-

ticipants did not provide the intended response in Q3

(n 5 19) compared to Q2 (n 5 9; Fig. 3). Therefore,

some participants were unable to apply their concep-

tual understanding of the problem consistently across

locations A and B.

Participants were presented with a new graphic in Q4

that tested their understanding of how probabilities

relate to ensemble members (Fig. 5). In this question,

participants needed to correctly identify which panel

represented the exceedance threshold of 0.01 in. of

rainfall (top), extract the color and corresponding

probability value at location B, and use those values to

estimate the number of ensemble members (out of 20)

predicting at least 0.01 in. of rainfall. The intended

response was two, three, or four ensemble members

(i.e., 10%–20% of ensemble members). Most partici-

pants (n 5 45) provided a response within this range,

with n 5 31 reporting two members, n 5 11 reporting

two or three members, and n 5 1 each reporting three

members, two to four members, or four members.

Additionally, n5 4 participants reported a percentage

of members [10% (n5 1), 10%–20% (n5 2), and 20%

(n5 1)], and although not incorrect, these participants

did not successfully translate the percentage ofmembers

into a quantity. The remaining n 5 13 participants gave

incorrect responses, including one member (n5 6), one

or two members (n 5 2), 18 members (n 5 2), zero

members (n 5 1), zero or one members (n 5 1), and

‘‘information is not given’’ (n 5 1).

Next, using this same graphic (Fig. 5), Q5 asked par-

ticipants to find the probability of rainfall exceeding 0.5

in. in box A. In this question, participants needed to ex-

tract the color located at box A in the middle panel that

represented the 0.5 in. of rainfall exceedance (Fig. 5). As

inQ4, this color represented probability values of 0.1–0.2,

and the intended answer was therefore a 10%–20%

chance of boxA exceeding 0.5 in. of rainfall. Themajority

of answers (n 5 50) fell within this range, with partici-

pants reporting 10% (n 5 37), 10%–20% (n 5 8), 20%

(n 5 3), 15%, (n 5 1), and 10%–19% (n 5 1). Some

participants continued to think about the problem in

terms of ensemble members, reporting two members

(n 5 4) and two to four members (n 5 1). The re-

maining participants (n 5 7) did not provide the in-

tended response and instead answered 0% (n 5 2),

0%–20% (n5 1), 5%–10% (n5 1), 90% (n5 1), 18–20

members (n 5 1), and ‘‘low but A is higher than B’’

(n 5 1). Four of these seven participants also did not

provide the intended response in the previous Q4.

The final two probability concept questions investigated

participants’ understanding of why probability values de-

cline in swaths of (Q6) accumulated rainfall exceeding a

FIG. 5. The 90-min probability of accumulated rainfall exceeding

(top) 0.01, (middle) 0.5, and (bottom) 0.75 in. (referred to in Q4

and Q5).
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threshold of 0.25 in. and (Q7) updraft helicity (UH)

exceeding a threshold of 20m2 s22 (Kain et al. 2008;

Fig. 6). Presented with four possible answers, partici-

pants were asked to select which answers most intui-

tively explained this effect (appendix). Regardless of the

weather scenario presented, an underlying driver for the

declining probability values is the increased trajectory

uncertainty toward the end of the swath; this answer was

therefore expected to dominate participants’ responses in

both questions. For the accumulated rainfall example,

most of the participants (n 5 52) selected the trajectory

uncertainty answer (Q6). However, participants (n5 42)

tended to choose more than one answer and therefore

also selected that the storm is expected to decrease in

intensity/strength (n 5 32) and/or that there is less time

for the rainfall to accumulate at that point during the

forecast period (n 5 33). The least popular answer was

also the least likely to be true: the storm is growing in size

and rainfall rate is forecasted to decrease (n5 5). Unlike

in Q6, the most popular answer for the updraft helicity

example in Q7 was that the storm is expected to decrease

in intensity/strength (n 5 47). Fewer participants se-

lected that the trajectory uncertainty is greater toward the

end of the swath (n 5 39), most of whom also selected

this answer in Q6 (n 5 35). Overall, participants’ se-

lections were more concentrated to one or two choices

in Q7, so a smaller subset of participants (compared to

Q6) selected the less likely answers that there is less time

to experience maximum updraft helicity during the

forecast period (n 5 14) and that the storm is growing in

size and rotation is broadening (n 5 6). The results

from Q6 and Q7 show that for some participants, their

interpretation of declining probability values de-

pended on the underlying meteorological variable of

the probability swath.

b. Percentile concepts

To assess participants’ knowledge and understanding

of percentile concepts, Q8 asked participants to explain

what the 70th-percentile value of accumulated rainfall

from an ensemble-based probabilistic forecast repre-

sents (Fig. 7). The qualitative responses (n 5 60) were

thematically coded and sorted into responses that

demonstrated a clear understanding of this concept (n5
36; Table 2) and responses that demonstrated mis-

understanding or ambiguity (n 5 24). Most participants

demonstrating a clear understanding explained that

70% of the ensemble members had a value less than

what was shown for the 70th percentile (n 5 29). It is

possible that the phrasing of the question biased par-

ticipants’ responses to focusing on the 70th percentile. A

smaller portion of participants explained that 30%, or a

minority, of ensemble members had a value more than

what was shown (n 5 10). Of these participants, most

responses (n 5 8) had also been coded for the previous

theme. A smaller number of participants (n 5 8) quali-

tatively described the 70th percentile as being a high-end

FIG. 6. Swaths of maximum ensemble probability of (top) ac-

cumulated rainfall exceeding 0.25 in. and (bottom) 2–5-km UH

exceeding 20m2 s22 for two storms (referred to in Q6 and Q7).
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possibility or that the values showed something akin to

the maximum. Half of these participants’ responses

were also coded for the first theme. Finally, a subset of

participants made reference to the probability distri-

bution function (pdf) concept in their responses. In

addition to fitting this pdf theme, all but one of these

participants’ responses were coded for at least one of

the other three themes. Responses indicating mis-

understanding or ambiguity included explanations

such as, ‘‘accumulated rainfall that at least 70% of the

members agree on,’’ ‘‘the regions shaded represent

the union of at least 70% of ensemble members,’’ and

‘‘the accumulated rainfall amount that 70% of the

members are producing.’’ Rather than recognizing

that the 70th percentile represented a rank within a

distribution, these examples suggest that some par-

ticipants applied deterministic ideas to understand

ensemble output. It is also possible that this mis-

interpretation stemmed from participants confusing

the concept of percentile value with that of the prob-

ability of exceedance.

Participants’ understanding of percentile representa-

tions of forecast uncertainty was further assessed in Q9,

where they were asked to explain how it compares to the

PoP that is used today.As inQ8, the qualitative responses

(n 5 58) were thematically coded, and in comparison,

more participants demonstrated a clear understanding

(n5 43), and fewer demonstratedmisunderstanding and

ambiguity (n 5 15). Most participants demonstrating a

clear understanding explained that the percentile re-

presentation of rainfall gives information on the amount

of rainfall, whereas PoP does not (n5 31). The next most

frequent theme was that unlike PoP, the percentile rep-

resentation does not tell you the incidence/probability of

rainfall (n 5 16). Most of these participants’ responses

were also coded for the first theme (n 5 12). A smaller

number of participants (n 5 8) noted differences in the

coverage and/or timing information provided in the

percentile and PoP representations of rainfall, and, as

in Q8, a group of (different) participants (n 5 12)

referenced the pdf concept in their responses. Partici-

pants demonstrating misunderstanding or ambiguity gave

varying responses, including that the percentile and PoP

representations of rainfall were ‘‘roughly equivalent,’’

that ‘‘I believe it will show overall higher probability

values,’’ and that ‘‘much of the model uncertainty (in

areal coverage) has been removed, showing where the

greatest agreement among ensemble members remain.’’

These responses suggest that some participants have

not yet grasped the meaning of and differences be-

tween percentile and PoP representations of rainfall. In

particular, 10 participants struggled to convey a clear

understanding of these concepts in both Q8 and Q9.

The remaining percentile concept questions (Q10–Q14)

required participants to examine graphics of the 10th,

50th, and 90th percentiles of accumulated rainfall and

extract the least and greatest amounts for boxes A and B.

In each of these questions, four to seven participants

(often the same people) did not provide a response. For

Q10, participants were asked to find the least amount

of rainfall expected in box A. Participants first needed

to recognize that ‘‘least’’ corresponded to the 10th-

percentile panel (Fig. 8) and then use the color bar to

find what value in the circle of the inset for box A was

represented.Most participants reported an accumulated

rainfall value corresponding to pink/red colors, with

greatest consensus (n5 28) being between 0.75 and 1.05

in. (Fig. 9a). Eight or fewer participants each reported a

value corresponding to one of the other shades of pink.

Additionally, n 5 15 participants gave values that were

either at the lower end (blues) or higher end (purples) of

the scale (Fig. 9a). Based on a handful of queries from

participants when taking the survey, we believe that

some of these outlier values were selected due to

confusion over whether to report the color in just the

circle or the entire inset box. If assessing the entire

box, blue colors are evident, which may also be con-

strued as purple depending on participants’ sensitivity

to the two colors.

FIG. 7. The ensemble 70th-percentile swath of accumulated rainfall

(referred to in Q8–Q9).
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Participants next reported the greatest amount of rain-

fall in boxA (Q11).Almost all of the participants correctly

referred to the 90th percentile and reported values cor-

responding to a shade of purple, with greatest consensus

(n5 44) corresponding to the highest contour (.1.8 in.) of

rainfall (Fig. 9b). A subset of participants (n 5 10) re-

ported values corresponding to other shades of purple

representing lower amounts of accumulated rainfall. Two

participants reported a value corresponding to pink, pos-

sibly due to confusion from the presence of this color lo-

cated outside of the circle in the box A inset (Fig. 9b).

The same questions were asked in Q12 and Q13 but

for box B. In the first of these two questions, all but two

participants successfully identified the least amount of

accumulated rainfall in box B as corresponding to one of

the blue contours (Fig. 9c). Participants’ responses were

also in strong consensus in Q13 for the greatest amount

at this location, with again all but two (different) par-

ticipants reporting values corresponding to a shade of

purple (Fig. 9d). These two participants instead reported

values corresponding to pink, possibly due to this

color appearing outside of the circle in the box B inset.

For Q10–Q13, participants occasionally included mod-

ifiers with their reported values, with the greater-than

modifier (.) being used most frequently. This modifier

was used predominantly in Q11 and Q13, likely due to

these questions asking for the greatest value and pos-

sibly influenced by the arrow located at the top of the

color bar indicating values in excess of what was shown.

Finally, Q14 asked participants to identify whether

location A or B had the greatest range of potential rain-

fall. Most participants (n5 54) were able to integrate the

information provided in the different percentile graphics

to determine the correct answer of location B. Of those

participants answering incorrectly, half also provided at

least one incorrect/unanswered response in Q10–Q13,

while the other half provided correct responses for those

questions but were unable to assess the potential rainfall

ranges successfully.

c. Combined probability and percentile concepts

Approximately one-third of the survey questions used

both probability and percentile concepts to test whether

participants could combine their understanding of the

two concepts to provide correct responses. The first two

questions, Q15 and Q16, required participants to use the

percentile representations of accumulated rainfall from

the previous question (Fig. 8) to determine the proba-

bility of exceeding a given value of rainfall. In Q15, over

half of the participants (n 5 35) gave the intended re-

sponse of 50% for the probability of exceeding 1.35 in.

of rainfall in box A. These participants were able to

correctly extract the purple contour on the color bar

FIG. 8. The 90-min ensemble (top) 10th-, (middle) 50th-, and

(bottom) 90th-percentile values for accumulated rainfall (referred

to in Q10–Q16).
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and see that this value for box A first appears in the

50th-percentile graphic (Fig. 8). Given that this per-

centile is the median of the distribution, these partici-

pants understood that 50% of the ensemble members

predicted accumulated rainfall values greater than

1.35 in. Furthermore, n 5 4 participants drew in-

formation from both the 10th- and 50th-percentile

graphics to report values of 10%–50%. Of the re-

maining participants, a handful reported 90% proba-

bility of exceedance (n 5 7), while a few reported

50%–90% (n5 3) and 70% (n5 3). Additionally, one

or two participants each responded with 10%, 55%,

60%, 100%, 60%–70%, or ‘‘high.’’

Next, Q16 was framed as in Q15; however, partici-

pants were asked to report probability values for ex-

ceeding 1.2 in. of accumulated rainfall in box B. This

time, a higher number of participants provided the

intended response of 50% (n 5 48), and a small subset

reported 10%–50% (n 5 6). Of the remaining partici-

pants, two answered 10%, and one participant each

answered 30%, 90%, 100%, 30%–40%, 50%–90%, and

‘‘less than A.’’ Although it is unclear why each of the

incorrect responses in Q15 and Q16 were given, one

possible reason for some of the incorrect responses is that

participants referred to the wrong percentile graphic. This

reason could be especially true in Q15, where participants

may have mistaken the light blue in the inset box at lo-

cation A for purple, resulting in an answer of 90%. Ad-

ditionally, although answers including a range of values

could not be ascertained with the limited information

provided in the three graphics, participants offering

these responses appeared to apply knowledge of the pdf

concept in both Q15 and Q16 and therefore demon-

strated an awareness of the potential plausible values

that could hold true.

Question 17 presented a graphic that showed both per-

centile and probability representations of 2–5-km updraft

helicity (Fig. 10). Participants were asked to assess this

information and indicate whether the graphics depicted

a high- or low-probability event with a high or low

consequence. The majority of participants (n 5 53) se-

lected the intended answer that the graphics showed a

low-probability high-consequence event. Two of these

participants also selected an alternative correct answer

(high-probability low-consequence event). Additionally, a

subset of participants (n 5 9) only selected one of these

incorrect answers. Showing similar products in Q18, par-

ticipants were asked to combine the information and select

one of four answers that provided the best compari-

son between the two storms (Fig. 11). One of two

intended answers was that Storm A could become

more intense than storm B, but both storms are about

as likely to reach UH (updraft helicity) values of

120 m2 s22, which most participants chose (n 5 47).

Fewer participants (n 5 12) selected the other plau-

sible but perhaps less obvious answer, which was that

Storms A and B could become equally intense, but

A is more likely to reach that peak intensity than B.

FIG. 9. Responses for the (a) least and (b) greatest amount of expected accumulated rainfall at location A (Q10 andQ11) and the (c) least

and (d) greatest amount of expected accumulated rainfall at location B (Q12 and Q13).
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The remaining n 5 3 participants incorrectly chose

that Storms A and B could become equally intense,

but B is more likely to reach that peak intensity than

A. Finally, no participants chose the remaining in-

correct answer that Storm B could become more in-

tense than storm A, but both storms are about as likely

to reach UH values of 120 m2 s22.

The final two questions of the survey gave participants a

side-by-side view of a probabilistic representation of

composite reflectivity and a percentile representation of

2–5-km updraft helicity (Fig. 12). Used together, these

two forecast products provide measures of both meso-

cyclone likelihood and severity, which can be used to rank

the storms in terms of potential impacts. To compare

participants’ perceptions of storm severity using these

two sources of information, they were asked to list which

of the six storms would be of primary concern (Q19) and

least concern (Q20). In response to Q19, almost all par-

ticipants (n 5 60) selected storm E as being of greatest

concern, and half also selected storm B (n 5 28) and/or

storm D (n 5 31). In Q20, participants were in strong

consensus that storm A (n 5 45) and storm C (n 5 50)

were of least concern (with two different anomalous

participants selecting storm A and selecting storm C

as a primary concern in Q19). Generally, participants

looking to encompass most, if not all, of the storms in

their answers also selected storm F. These partici-

pants were fairly split between whether this storm was

FIG. 10. (top) Percentile and (bottom) probability swaths of 2–5 km UH (m2 s22) for storms A and B (referred to in Q17).
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of primary concern (n5 8) or least concern (n5 6), likely

due to its more marginal representation of severity rela-

tive to the other storms. While approximately half of the

participants preferred to focus on a single storm for each

answer, the other half included most if not all of the

storms in their two responses. Overall, participants’ re-

sponses to this question show that their perceptions of

storm severity corresponded well when using both prob-

abilistic and percentile forecast guidance.

4. Discussion

The survey presented in this paper provides insight

intometeorologists’ understanding and interpretation of

probabilistic and percentile ensemble forecast products

during the 2017 SFE. Traditionally, the majority of

weather information that meteorologists use and com-

municate is deterministic, meaning that event occur-

rence is often treated dichotomously (i.e., it either is or

is not going to occur). In some survey questions, we

found substantial variability in the extent to which par-

ticipants could think beyond this deterministic mindset

and successfully synthesize, extract, and apply uncertainty

guidance information. This varying ability was evident in

both qualitative and numerical responses. For example,

although most participants recognized that only limited

conclusions could be drawn for the maximum amount of

accumulated rainfall from the information given in bothQ2

FIG. 11. As in Fig. 10, but for storms referred to in Q18.
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and Q3 (i.e., using exceedance thresholds and probability

values), a selection of participants disregarded the un-

certainty depicted in the graphic and instead provided

specific (deterministic) values for accumulated rainfall.

Furthermore, in qualitative responses toQ8, just under half

of the participants demonstrated misunderstanding or am-

biguity in their explanations of the percentile concept. Of-

tentimes, these inaccurate explanations were deterministic

in nature, such that participants described the 70th

percentile in an aggregated sense rather than as a rank

within a distribution of values. Most commonly, this

type of aggregated explanation reflected a belief that the

70th percentile in an ensemble prediction system meant

that 70% of the members agreed on the accumulated

rainfall value.

In other questions, participants providing correct re-

sponses did not always interpret the graphical in-

formation equally; while some participants accepted the

given information at face value and provided correct,

single-value answers, others attempted to recognize the

inherent uncertainty and interpreted the graphics a step

further by providing all possible answers. For exam-

ple, in responses to Q4 and Q5, while most partici-

pants looked at the discrete steps of the color bar

and provided a single value answer (e.g., ‘‘2 ensemble

members’’ or ‘‘10% probability’’), a smaller portion of

participants interpolated between the color bar steps

and provided a range of values (e.g., ‘‘2–4 members’’ or

‘‘10–20%’’). Similarly, in Q15 and Q16, while the ma-

jority of participants provided single probability value

answers, a smaller portion of participants instead opted

to interpolate between the discrete color bar steps

to give a range of probability values that, although

plausible, were not fully supported with the limited

information provided. One possible explanation for

these observed differences in participants’ graphical

interpretations is the extent to which they were will-

ing or able to move beyond a deterministic mindset

FIG. 12. Accumulated maximum probabilities of (left) simulated composite reflectivity (dBZ) and (right) the ensemble 90th-percentile

values of 0–2-km UH (m2 s22; referred to in Q19 and Q20).
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and instead consider the problem within probabilistic

space. The reasons behind meteorologists’ different

applications of deterministic and probabilistic mindsets

needs to be explored further to better understand why

some meteorologists are able to transition between

these two mindsets more easily than others.

Participants’ understanding of probabilistic repre-

sentations of uncertainty information was also found to

be a function of the variable that the graphic depicted.

When provided with swaths of probability values rep-

resenting accumulated rainfall and updraft helicity (Q6

and Q7), participants were asked to identify the most

intuitive reason(s) for why the probability values decline

toward the end of the swath. In both examples, the pri-

mary underlying reason was attributable to increased

trajectory uncertainty toward the end of the swath.

However, more than twice as many participants (n5 23)

did not select this answer for the updraft helicity ex-

ample compared to the accumulated rainfall example

(n 5 10). This result suggests that a large proportion

of the participating meteorologists did not apply their

understanding of probabilistic concepts uniformly to the

accumulated rainfall example and the updraft helicity

example. Instead, participants shifted how they interpret

uncertainty guidance depending on the variable they were

examining. This result may have been influenced by dif-

ferences in participants’ overall familiarity with these two

variables (with greater exposure expected to the accu-

mulated rainfall variable), their level of understanding

for the atmospheric science principals that explain these

two variables, and the extent to which they have en-

countered probabilistic representations of these variables

previously. This inconsistent application of knowledge

supports the need for educating meteorologists on how

various meteorological variables are treated in CAMs

and how graphical representations of uncertainty in-

formation are subsequently created.

In addition to the meteorological variable influencing

participants’ understanding of probabilistic concepts,

strong tendencies to focus on the worst-case scenario

also influenced answer selections in Q17. When given

percentile and probabilistic representations of 2–5-km

updraft helicity, n 5 53 participants reported that the

graphics depicted a low-probability high-consequence

event, of whom only n 5 2 also gave the second correct

answer of a high-probability low-consequence event.

Therefore, most participants defaulted their attention to

the scenario that had greatest potential impact without

recognizing the range of potential outcomes. A similar

outcomewas observed inQ1when forecasters inferred a

worst-case-scenario interpretation into the probability

of exceeding a measurable amount of rainfall. However,

when encouraged to consider all scenarios in Q19 and

Q20 to identify which storms were of greatest and least

concern when using a combination of percentile and

probabilistic forecast guidance, responses showed that

participants’ perceptions of storm severity were well

aligned. This result suggests that probability and per-

centile information, when presented together, may im-

prove overall understanding.

5. Conclusions

This survey was designed to explore professional me-

teorologists’ current knowledge, understanding, and ap-

plication of probabilistic guidance during the 2017 SFE.

Overall, the results are encouraging, with 60%–96% of

participants providing correct answers for each of

the questions addressing probability concepts, per-

centile concepts, and a combination of probability

and percentile concepts (Fig. 3). Participants pro-

viding correct responses varied in terms of their depth

of understanding, levels of interpretation, and abili-

ties to think beyond a deterministic mindset. Although

many participants demonstrated a strong understanding

of probabilistic and percentile concepts, those providing

incorrect responses demonstrated that knowledge gaps

relating to the use and interpretation of uncertainty in-

formation currently exist even for those actively working

in the field of meteorology. Open-ended questions re-

quiring participants to depend on their own knowledge to

provide qualitative explanations of either a graphic or

percentile concepts proved to be most challenging (e.g.,

Q1, Q8, and Q9). Additionally, in some instances, par-

ticipants also struggled to apply a correct understanding

of concepts consistently across questions that were similar

in nature. That is, although the same knowledge and skills

were required to answer multiple questions that were of

the same style, inquiring about a different aspect of the

same graphic or a different variable impacted partici-

pants’ abilities to provide the intended response (e.g., Q2

and Q3; Q6 and Q7).

The findings from this survey therefore support the need

for improved basic and applied training for the develop-

ment, interpretation, and use of probabilistic ensemble

forecast guidance as the meteorological community

moves toward increased generation and communica-

tion of uncertainty information. This training need has

been recognized in past comprehensive reports, with

recommendations for revision of undergraduate and

graduate education to include uncertainty training

(Hirschberg et al. 2011), for improvements in training

for operational use and applications of uncertainty in-

formation (NRC 2006; Novak et al. 2008; Hirschberg

et al. 2011), and for educating the public on the

meaning of products that communicate uncertainty and
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risk (NRC 2006). In addition to these recommenda-

tions, our survey findings suggest a need for training

materials that are available to meteorologists already

working in various sectors of the weather enterprise.

This training material should focus on reviewing basic

concepts of storm-scale probabilistic forecast guidance,

educating meteorologists on the interpretation and

application of this information for various scenarios, and

ensuring that meteorologists understand how different

probabilistic products are generated and how they can

be used in a complementary manner to most effectively

evaluate the weather scenario. Training should build upon

the educational resources already available, such as the

NOAA NWS/UCAR COMET program’s distance learn-

ing lessons on forecast uncertainty and ensemble prediction

systems, and be developed in coordination with other of-

ficial training agencies, such as the NOAA NWS Warning

Decision Training Division. Furthermore, rather than be-

ing associated with misinformation or a lack of knowledge,

on occasion participants’ incorrect survey responses ap-

peared to relate to possible difficulties interpreting color

schemes or their inattention to detail in the graphics.

Further research exploring the visualization of weather

information is therefore needed to maximize users’ com-

prehension and use of probabilistic forecast guidance,

such that the overall graphic design supports forecasters’

intuitive understanding and approaches to assessing such

information (e.g., Hegarty et al. 2010; Hogan Carr et al.

2016; Quinan and Meyer 2016).

Given the small sample size and relatively uniform

demographics of the participants that completed the sur-

vey during the 2017 SFE, recommending specific training

needs of meteorologists working in different professions

(e.g., in research or operations) is imprudent. A major

limitation of this study is that the majority of respondents

identified themselves as working in the research commu-

nity, leading to the operational and student/postdoc par-

ticipants being underrepresented in the results. However,

while not a focus of this survey, our results did indicate

that inaccuracies in participants’ understanding of proba-

bility and percentile concepts spanned each of these pro-

fessional categories. This finding motivates the need for

future research that will expand on these survey efforts by

increasing the sample size of responses for each

profession. This research would build on the findings

presented herein and develop a more precise un-

derstanding of what knowledge gaps exist among

meteorologists serving in different professions and

how education and training could be tailored to meet

the needs of specific user groups.
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APPENDIX

Survey Questions

Probability Concept

1) In 1–3 sentences, please describe what kind of event

is depicted by this graphic.

2) According to the information provided, what is the

maximum amount of rainfall possible within boxA?

3) According to the information provided, what is the

maximum amount of rainfall possible within box B?

4) Out of 20 ensemble members, how many predict at

least 0.01 in. of rain will fall within box B?

5) Given the information presented, what is the prob-

ability of exceeding 0.5 in. of rainfall within box A?

6) Within box A, toward the end of the swath, the

probability values (at the given level of intensity)

decline. In your opinion, which of the following

factor(s) most intuitively explain(s) what is hap-

pening? (Choose all that apply: the storm is

expected to decrease in intensity/strength; there

is less time for the rainfall to accumulate at that

point during the forecast period; trajectory un-

certainty is greater toward the end of the swath;

the storm is growing in size and rainfall rate is

forecasted to decrease.)

7) Within box A, toward the end of the swath, the

probability values (at the given level of intensity)

decline. In your opinion, which of the following

factor(s) most intuitively explain(s) what is happen-

ing? (Choose all that apply: the storm is expected to

decrease in intensity/strength; trajectory uncertainty

is greater toward the end of the swath; the storm is

growing in size and rotation is broadening; there is

less time to experience maximum updraft helicity

during the forecast period.)

Percentile Concept

8) In an ensemble-based probabilistic forecast, what

do you think the 70th percentile value of accumu-

lated rainfall represents?
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9) How does this representation of forecast uncer-

tainty compare to the PoP used today?

10) Based on the information shown, within box A,

what is the least amount of rainfall expected? Please

refer to the insets on the left for a closer look at the

areas of interest.

11) Based on the information shown, within box A,

what is the greatest amount of rainfall expected?

12) Based on the information shown, within box B,

what is the least amount of rainfall expected?

13) Based on the information shown, within box B,

what is the greatest amount of rainfall expected?

14) Based on the information provided, atwhich location,

A or B, was the range of potential rainfall greatest?

Probability and Percentile Concept Questions

15) Based on the information shown, what is the prob-

ability of exceeding 1.35 in. of rainfall within box A?

16) Based on the information shown, what is the prob-

ability of exceeding 1.2 in. of rainfall within box B?

17) Choose all responses that apply. Considered to-

gether, these graphics show a: high probability, low

consequence event; high-probability, high conse-

quence event; low-probability, low consequence

event; low-probability, high-consequence event.

18) Considered together, these graphics show: storms

A and B could become equally intense, but A is

more likely to reach that peak intensity than B;

storm A could become more intense than storm B,

but both storms are about as likely to reach UH

values of 120m2 s22; storm A and B could become

equally intense, but B is more likely to reach that

peak intensity at A; storm B could become more

intense than storm A, but both storms are about as

likely to reach UH values of 120m2 s22.

19) Based on the information given, which storm(s)

would be your primary concern?

20) Based on the information given, which storm(s)

would you be least concerned with?
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